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We introduce a model of proportional growth to explain the
distribution Pg(g) of business-firm growth rates. The model pre-
dicts that Pg(g) is exponential in the central part and depicts an
asymptotic power-law behavior in the tails with an exponent � �

3. Because of data limitations, previous studies in this field have
been focusing exclusively on the Laplace shape of the body of the
distribution. In this article, we test the model at different levels of
aggregation in the economy, from products to firms to countries,
and we find that the predictions of the model agree with empirical
growth distributions and size-variance relationships.

proportional growth � preferential attachment � Laplace distribution

G ibrat (1, 2), building on the work of the astronomers Kapteyn
and Uven (3), assumed the expected value of the growth rate

of a business firm’s size to be proportional to the current size of the
firm, which is called the law of proportionate effect (4, 5). Several
models of proportional growth have been subsequently introduced
in economics to explain the growth of business firms (6–8). Simon
and co-workers (9–12) extended Gibrat’s model by introducing an
entry process according to which the number of firms rise over time.
In the framework of Simon and co-workers, the market consists of
a sequence of many independent ‘‘opportunities’’ that arise over
time, each of size unity. Models in this tradition have been
challenged by many researchers (13–17) who found that the firm-
growth distribution is not Gaussian but displays a tent shape.

Here we introduce a general framework that provides a unifying
explanation for the growth of business firms based on the number
and size distribution of their elementary constituent components
(18–25). Specifically, we present a model of proportional growth in
both the number of units and their size, and we draw some general
implications on the mechanisms that sustain business-firm growth
(7, 11, 21, 26–28). According to the model, the probability density
function (PDF) of growth rates is Laplace in the center (13) with
power-law tails (29, 30) decaying as Pg(g) � g��, where � � 3.

Also, because of data limitations, previous studies in this field
focus on the Laplace shape of the body of the distribution, which,
however, is an unconditional object (31). Using a database on the
size and growth of firms and products, we characterize the shape of
the whole growth-rate distribution.

We test our model by analyzing different levels of aggregation of
economic systems, from the ‘‘micro’’ level of products to the
‘‘macro’’ level of industrial sectors and national economies. We find
that the model accurately predicts the shape of the PDF of growth
rate at all levels of aggregation studied.

The Theoretical Framework
We model business firms as classes consisting of a random number
of units. According to this view, a firm is represented as the
aggregation of its constituent units such as divisions (22), businesses
(20), or products (21). Accordingly, on a different level of coarse
graining, a class can represent a national economy composed of
economic units such as firms. In this article, we study the logarithm
of the 1-year growth rate of classes g � log[S(t � 1)�S(t)], where S(t)

and S(t � 1) are the sizes of classes in the year t and t � 1 measured
in monetary values [gross domestic product (GDP) for countries,
sales for firms and products]. Our model is illustrated in Fig. 1. Two
key sets of assumptions in the model are that the number of units
in a class grows in proportion to the existing number of units
(Assumptions 1–4) and the size of each unit fluctuates in proportion
to its size (Assumptions 5 and 6).

Assumption 1. Each class � consists of K�(t) number of units. At time
t � 0 (time step measured by year, generally), there are N(0) classes
consisting of n(0) total number of units. The initial average number of
units in a class is thus n(0)�N(0).

Assumption 2. At each time step, a new unit is created. Thus, the
number of units at time t is n(t) � n(0) � t.

Assumption 3. With birth probability b, this new unit is assigned to a
new class so that the average number of classes at time t is N(t) �
N(0) � bt.

Assumption 4. With probability 1 � b, a new unit is assigned to an
existing class � with probability P� � (1 � b) K�(t)�n(t), so K�(t �
1) � K�(t) � 1.

For simplicity, we do not consider the decrease of the number of
units in a class. In reality, elementary units enter and exit. Because
we are considering the case of a growing economy, it is legitimate
to assume that the entry rate is higher than the exit rate. On the
average, the net entry rate of units can be simplified as a positive
constant. In the model, the net entry rate of units is fixed at 1. Thus,
at large t, it gives results equivalent to the ones that would have been
obtained when considering a value for the exit rate of units.

Our goal is to find P(K), the probability distribution of the
number of units in the classes at large t. This model in two
limiting cases, (i) b � 0, K� � 1 (� � 1, 2, . . . N(0)) and (ii) b �
0, N(0) � 1, n(0) � 1, has exact analytical solutions P(K) �
N(0)�t{t�[t � N(0)]}K [1 � O(1�t)] (32, 33) and limt3� P(K) �
(1 � b�)	(K)	(2 � b�)�	 (K � 2 � b�), where b� � b�(1 � b)
(34), respectively.

In the general case, the exact analytical solution is not known, and
we obtain a numerical solution by computer simulations and
compare it with the approximate mean-field solution (see, e.g.,
chapter 6 of ref. 35 and Appendix A).

Our results are consistent with the exactly solvable limiting cases
as well as with the empirical data on the number of products in the
pharmaceutical firms and can be summarized as follows. In the limit
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of large t, the distribution of K in the old classes that existed at t �
0 converges to an exponential distribution (36),

Pold
K� � �K
1

K
 t� � 1
�

1
K
 t�

exp��K�K
 t�
 , [1]

where � � 1 � 1�K(t) and K(t) is the average number of units in
the old classes at time t, K(t) � {[n(0) � t]�n(0)}1�b�n(0)b�N(0).
The distribution of units in the new classes created at t � 0
converges to a power law with an exponential cutoff,

Pnew
K� � K��f
K� , [2]

where � � 2 � b�(1 � b) and f(K) decays for K3 � faster than
Pold(K). The distribution of units in all classes is given by

P
K� �
N
0�

N
0� � bt
Pold
K� �

bt
N
0� � bt

Pnew
K� . [3]

The mean-field approximation for Pnew(K) is given by

Pnew
K� �
n
0�� t � 1

1 � b
K ��1/
1�b��1
 �

K�

K

e�y y
1

1�b dy , [4]

where K� � K{n(0)�[n(0) � t]}1�b.

Assumption 5. At time t, each class � has K�(t) units of size �i(t), i �
1, 2, . . . K�(t), where K� and �i � 0 are independent random variables
taken from the distributions P(K�) and P�(�i), respectively. P(K�) is
defined by Eq. 3 and P�(�i) is a given distribution with finite mean 	�

and standard deviation 
� . We also assume that ln�i has finite mean
m� � �ln�i� and variance V� � �(ln�i)2� � 	�

2. The size of a class is
defined as S�(t) � ¥i�1

K� �i(t).

Assumption 6. At time t � 1, the size of each unit is decreased or
increased by a random factor �i(t) � 0 so that

�i
t � 1� � �i
t��i
t�, [5]

where �i(t) � 0, the growth rate of unit i, is an independent random
variable taken from a distribution P�(�i), which has a finite mean 	�

and standard deviation 
� . We also assume that ln�i has finite mean
m� � �ln �i�, and variance V� � �(ln �i)2� � m�

2.
The growth rate of each class is defined as

g� � log � S�
 t � 1�

S�
 t� � � log � 	
i�1

K�

� i
 t � 1�
 	
i�1

K�

� i
 t�� .

[6]

Here we neglect the influx of the new units, so K� � K�(t �
1) � K�(t). The resulting distribution of the growth rates of all
classes is determined by

Pg
g� � 	
K�1

�

P
K�Pg
g�K�, [7]

where P(K) is the distribution of the number of units in the classes,
computed in the previous stage of the model, and Pg(g�K) is the
conditional distribution of growth rates of classes with a given
number of units determined by the distribution P�(�) and P�(�).

The analytical solution of this model can be obtained only for
certain limiting cases, but a numerical solution can be computed
easily for any set of assumptions. We investigate the model numer-
ically and analytically (see Appendix B) and find:

1. The conditional distribution of the logarithmic growth rates
Pg(g�K) for the firms consisting of a fixed number of units
converges to a Gaussian distribution for K 3 �,

Pg
g�K� �
�K

�2�V
exp�
g � g� �2K�2V
 , [8]

where V is a function of parameters of the distribution P�(�)
and P�(�), and g� is the logarithm of mean growth rate of a
unit, g� � ln 	�. Thus, the width of this distribution decreases
as 1��K. This result is consistent with the observation that
large firms with many production units f luctuate less than
small firms (7, 18, 22, 37).

2. For g �� V�, the distribution Pg(g) coincides with the
distribution of the logarithms of the growth rates of the units:

Pg
g� � P�
ln �� . [9]

In the case of power-law distribution P(K) � K��, which
dramatically increases for K 3 1, the distribution Pg(g) is
dominated by the growth rates of classes consisting of a single
unit K � 1; thus, the distribution Pg(g) practically coincides
with P�(ln �i) for all g. Indeed, our empirical observations
confirm this result.

3. If the distribution P(K) � K��, � � 2 for K3 �, as happens
in the presence of the influx of new units b � 0, Pg(g) � C1 �
C2�g�2��3, for g 3 0, which in the limiting case b 3 0, � 3
2 gives the cusp Pg(g) � C1 � C2�g� (C1 and C2 are positive
constants), similar to the behavior of the Laplace distribution
PL(g) � exp(��g�C2) for g 3 0.

4. If the distribution P(K) weakly depends on K for K 3 1, the
distribution of Pg(g) can be approximated by a power law of
g: Pg(g) � �g��3 in wide range �V�K(t) �� g �� �V�, where
K(t) is the average number of units in a class. This case is
realized for b � 0, t 3 � when the distribution of P(K) is
dominated by the exponential distribution and K(t) 3 � as
defined by Eq. 1. In this particular case, Pg(g) for g �� �V
can be approximated by

Fig. 1. Schematic representation of the model of proportional growth. At
time t � 0, there are N(0) � 2 classes (�) and n(0) � 5 units (�) (Assumption
1). The area of each circle is proportional to the size � of the unit, and the size
of each class is the sum of the areas of its constituent units (see Assumption 5).
At the next time step, t � 1, a new unit is created (Assumption 2). With
probability b the new unit is assigned to a new class (class 3 in this example)
(Assumption 3). With probability 1 � b the new unit is assigned to an existing
class with probability proportional to the number of units in the class (As-
sumption 4). In this example, a new unit is assigned to class 1 with probability
3�5 or to class 2 with probability 2�5. Finally, at each time step, every unit i
grows or shrinks by a random factor �i (Assumption 6).

18802 � www.pnas.org�cgi�doi�10.1073�pnas.0509543102 Fu et al.



Pg
g� �
�K
t�

2�2V
�1 �

K
t�
2V

g2��3/2

. [10]

5. In the case in which the distribution P(K) is not dominated by
one-unit classes but for K3 � behaves as a power law, which
is the result of the mean-field solution for our model when t3
�, the resulting distribution Pg(g) has three regimes: Pg(g) �
C1 � C2�g�2��3 for small g, Pg(g) � �g��3 for intermediate g,
and Pg(g) � P(ln �) for g 3 �. The approximate solution of
Pg(g) is obtained by using Eq. 8 for Pg(g�K) for finite K,
mean-field solution Eq. 4 in the limit t 3 � for P(K), and
replacing summation by integration in Eq. 7:

Pg
g� �
1

1 � b
1

�2�V �
0

�

exp
�y� y
1

1�b dy

��
y

�

exp
�g2K�2V �K��
1
2�

1
1�b
dK . [11]

For b � 0 the integral above cannot be expressed in elemen-
tary functions. In the b3 0 case, Eq. 11 yields the main result

Pg
g� �
2V

�g2 � 2V
�g� � �g2 � 2V�2, 
b3 0�, [12]

which combines the Laplace cusp for g3 0 and the power-law
decay �g��3 for g 3 �. Note that because of replacement of
summation by integration in Eq. 7, the approximation Eq. 12
holds only for g � �V�.

In Fig. 2a we compare the distributions given by Eq. 10, the
mean-field approximation Eq. 11 for b � 0.1, and Eq. 12 for b3
0. We find that all three distributions have very similar tent-
shape behavior in the central part. In Fig. 2b we also compare
the distribution Eq. 12 with its asymptotic behaviors for g 3 0
(Laplace cusp) and g 3 � (power law) and find the crossover
region between these two regimes.

The Empirical Evidence
To test our model, we analyze different levels of aggregation of
economic systems, from the micro level of products to the macro
level of industrial sectors and national economies.

First, we analyze a database, the pharmaceutical industry data-
base (PHID), that records sales figures of the 189,303 products
commercialized by 7,184 pharmaceutical firms in 21 countries from
1994 to 2004, covering the whole size distribution for products and
firms and monitoring the flows of entry and exit at both levels
(kindly provided by the EPRIS program). Then, we study the growth
rates of all U.S. publicly traded firms from 1973 to 2004 in all
industries, based on Security Exchange Commission filings (Com-
pustat). Finally, at the macro level, we study the growth rates of the
GDP of 195 countries from 1960 to 2004 (World Bank).

Fig. 3 shows that the growth distributions of countries, firms, and
products are well fitted by the distribution in Eq. 12 with different
values of Vg. Indeed, growth distributions at any level of aggregation
depict marked departures from a Gaussian shape. Moreover, even
if the Pg(g) of GDP can be approximated by a Laplace distribution,
the Pg(g) of firms and products are clearly more leptokurtic than
Laplace. Based on our model, the growth distribution is Laplace in
the body, with power-law tails. In fact, Fig. 4 shows that the central
body part of the growth-rate distributions at any level of aggregation
is well approximated by a double-exponential fit. Fig. 5 reveals that
the asymptotic behaviors of g at any level of aggregation can be well
fitted by power law with an exponent � � 3.

Our analysis in The Theoretical Framework predicts that the
power-law regime of Pg(g) may vary depending on the behavior of

P(K) for K3 1 and the distribution of the growth rates of units. In
the case of the PHID, for which P(1) �� P(2) �� P(3) . . . , the
growth-rate distribution of firms must be almost the same as the
growth-rate distribution of products (as we stated in The Theoretical
Framework). Hence, the power-law wings of Pg(g) for firms origi-
nate at the level of products. Because the PHID does not contain
information on the subunits of products, we cannot test our
prediction directly, but we can hypothesize that the distribution of
the product subunits (number of customers or shipping ways) is less
dominated by small K but has a sufficiently wide power-law regime
because of the influx of new products. These rather plausible
assumptions are sufficient to explain the shape of the distribution
of the product growth rates, which is well described by Eq. 12.

The PHID allows us to test the empirical conditional distribution
Pg(g�K) and the dependence of its variance 
2 on K, where K is the
number of products. We find that 
 � K�0.28, which is significantly
smaller than 1��K behavior. This result does not imply correlations
among product growth rates on the firm level (21) but can be
explained by the fact that for skewed distributions of product sizes
P�(�) characterized by large V�, the convergence of Pg(g�K) to its
Gaussian limit Eq. 8 is slow and the growth rates of the firms are
determined by the growth of the few large products. Using the

Fig. 2. The growth rate PDF, Pg(g). (a) Comparison of three different ap-
proximations given by Eq. 10, mean field approximation Eq. 11 for b � 0.1 and
Eq. 12. Each Pg(g) shows similar tent shape behavior in the central part. We see
there is little difference between the three cases, b � 0 (no entry), b � 0.1 (with
entry), and Eq. 12. This means that entry of new classes (b � 0) does not
perceptibly change the shape of Pg(g). Note that we use K(t)�V � 2.16 for Eq.
10 and V � 1 for Eq. 12. (b) The crossover of Pg(g) given by Eq. 12 between the
Laplace distribution in the center and power law in the tails. For small g, Pg(g)
follows a Laplace distribution Pg(g) � exp( � �g�), and for large g, Pg(g)
asymptotically follows an inverse cubic power law Pg(g) � g � 3.
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empirical values for the PHID 	� � 3.44, V� � 5.13, 	� � 0.016,
V� � 0.36 and assuming log-normality of the distributions P�(�) and
P�(�), we find that the behavior of 
 can be well approximated by
a power law 
 � K�0.20 for K � 103. For this set of parameters, the
convergence of Pg(g�K) to a Gaussian distribution takes place only
for K � 105. This result is consistent with the observations of the
power-law relationship between firm size and growth-rate variance
reported earlier (13, 18, 19, 38).

Discussion
Business firms grow in scale and scope. The scope of a firm is given
by the number of its products. The scale of a firm is given by the size

of its products. A firm such as Microsoft gets few big products,
whereas Amazon sells a huge variety of goods, each of small size in
terms of sales. In this article we argue that both mechanisms of
growth are proportional. The number of products that a firm can
launch successfully is proportional to the number of products that
it has already commercialized. Once a product has been launched,
its success depends on the number of customers who buy it and the
price they are willing to pay. To a large extent, if products are
different enough, the success of a product is independent from
other products commercialized by the same company. Hence, the
sales of products can be modeled as independent stochastic pro-
cesses. Moreover, sometimes, new products are commercialized by
new companies. As a result, small companies with few products can
experience sudden jerks of growth resulting from the successful
launch of a new product.

In this article, we find that the empirical distribution of firm
growth rates exhibits a central part that is distributed according to
a Laplace distribution and power-law wings Pg(g) � g��, where � �
3. If the distribution of number of units K is dominated by
single-unit classes, the tails of firm growth distribution are primarily
due to smaller firms composed of one or few products. The Laplace
center of the distribution is shaped by big multiproduct firms. We
find that the shape of the distribution of firm growth is almost the
same in the presence of a small entry rate and with zero entry. We
also find that the predictions of the model are accurate in the case
of product growth rates, which implies that products can be
considered as composed of elementary sale units, which evolve
according to a random multiplicative process (6). Although there
are several plausible explanations for the Laplace body of the
distribution, which can be considered as an unconditional object
(18, 31), the power-law decay of the tails has not been observed
previously. We introduce a simple and general model that accounts
for both the central part and the tails of the distribution. The shape
of the business growth-rate distribution is due to the proportional
growth of both the number and the size of the constituent units in
the class. This result holds in the case of an open economy (with
entry of new firms) as well as in the case of a closed economy (with
no entry of new firms).

Appendix A: The Distribution of Units in Old and New Classes
Assume that at the beginning there are N(0) classes with n(0) units.
Because at every time step one unit is added to the system and a new
class is added with probability b, at moment t there are n(t) � n(0) �

Fig. 3. Empirical tests of Eq. 12 for the PDF Pg(g) of growth rates rescaled by
�Vg. Shown are country GDP (�), pharmaceutical firms (�), manufacturing
firms (�), and pharmaceutical products (‚). The shapes of Pg(g) for all four
levels of aggregation are well approximated by the PDF predicted by the
model (dashed lines). Dashed lines are obtained based on Eq. 12 with Vg �
4 
 10 � 4 for GDP, Vg � 0.014 for pharmaceutical firms, Vg � 0.019 for
manufacturing firms, and Vg � 0.01 for products. After rescaling, the four
PDFs can be fit by the same function. For clarity, the pharmaceutical firms are
offset by a factor of 102, manufacturing firms by a factor of 104, and the
pharmaceutical products by a factor of 106. Note that the data for pharma-
ceutical products extend from Pg(g) � 1 to Pg(g) � 10 � 4, and the mismatch
in the tail parts is because Pg(g) for large g is mainly determined by the
logarithmic growth rates of units ln �.

Fig. 4. Empirical test of Eq. 12 for the central part in the PDF P(g) of growth
rates rescaled by �Vg. Shown are four symbols: country GDP (�), pharma-
ceutical firms (e), manufacturing firms (�), and pharmaceutical products (‚).
The shape of central parts for all four levels of aggregation can be well fit by
a Laplace distribution (dashed lines). Note that Laplace distribution can fit
Pg(g) only over a restricted range, from Pg(g) � 1 to Pg(g) � 10 � 1.

Fig. 5. Empirical tests of Eq. 12 for the tail parts of the PDF of growth rates
rescaled by �Vg. The asymptotic behavior of g at any level of aggregation can
be well approximated by power laws with exponents � � 3 (dashed lines). The
symbols are as follows: country GDP (left tail, �; right tail, ● ), pharmaceutical
firms (left tail, e; right tail, f), manufacturing firms (left tail, �; right tail, �),
and pharmaceutical products (left tail, ‚; right tail, Œ).
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t units and N(t) � N(0) � bt classes, among which there are bt new
classes with nnew units and N(0) old classes with nold units, such that
nold � nnew � n(0) � t.

Because of the preferential attachment assumption, we have

dnnew

dt
� b � 
1 � b�

nnew

n
0� � t
, [A1]

dnold

dt
� 
1 � b�

nold

n
0� � t
. [A2]

Solving the second differential equation and taking into account
initial condition nold(0) � n(0), we obtain

nold
 t� � �n
0� � t
1�bn
0�b. [A3]

Analogously, the number of units at time t in the classes existing
at time t0 is ne(t0, t) � [n(0)�t]1�b[n(0)�t0]b, where the
subscript e means ‘‘existing.’’ The average number of units in old
classes is

K
t� �
nold
 t�
N
0�

�
�n
0� � t
1�b

N
0�
n
0�b. [A4]

It is known (36) that for t3� the preferential attachment model
converges to the exponential distribution Eq. 1. Thus, we obtain
Pold(K) in the form of Eq. 1 where K(t) is given by Eq. A4.

The number of units in the classes that appear at t0 is bdt, and the
number of these classes is bdt. Because the probability that a class
captures a new unit is proportional to the number of units it has
already gotten at time t, the number of units at time t in the classes
that appear at time t0 is nnew
t0, t� � ne
t0, t� � bdt��n
0� � t0
.

The average number of units in these classes is K(t0, t) � nnew(t0,
t)�bdt � [n(0) � t]1�b�[n(0) � t0]1�b. Assuming that the distribution
of units in these classes is given by a continuous approximation in
Eq. 1, their contribution to the total distribution is

bdt0

N
0� � bt
1

K
t0, t�
exp��K�K
 t0, t�
 .

The contribution of all new classes to the distribution P(K) is

P̃new
K� �
b

N
0� � bt�
0

t 1
K
 t0, t�

exp��K�K
 t0, t�
dt0. [A5]

If we let y � K�K(t0, t), then P̃new(K) � bt�[N(0) � bt]Pnew(K),
where

Pnew
K� �
b

1 � b
K��

1
1�b�1
 n
0� � t

N
0� � bt

� �
0

K

e�y y
1

1�b dy . [A6]

Note that Eq. A6 is not an exact solution but a continuous
approximation that assumes K is a real number. Now we
investigate the distribution in Eq. A6.

1. At fixed K when t3 �, the low limit of integration in Eq. A6
goes to zero and we have

Pnew
K� �
K�1�

1
1�b

1 � b
� �

0

K

e�y y
1

1�b dy . [A7]

As K 3 �,

Pnew
K� � K�1�
1
b� 1

1 � b
 	� 1 �
1

1 � b
 . [A8]

As K 3 0, Pnew
K� � 1�
2 � b� .

2. At fixed t when K 3 �, we use the partial integration to
evaluate the incomplete 	 function: 	(x, ��1) � e�x x�.
Therefore, from Eq. A6 we obtain

Pnew
K� �
n
0�

N
0� � bt
b

1 � b
1
K

exp��K� n
0�

n
0� � t�
1�b� ,

[A9]

which always decays faster than Pold(K).

Appendix B: Calculation of the Growth Distribution
of Classes P(g)
Let us assume that both the size and growth of units (� i and �i,
respectively) are distributed log-normally

p
�i� �
1

�2�V�

1
�i

exp��
 ln � i � m��
2�2V�
 , [A10]

p
�i� �
1

�2�V�

1
�i

exp��
 ln � i � m��2�2V�
 . [A11]

If units grow according to a multiplicative process, the size of units
��i � � i� i is distributed log-normally with V�� � V� � V� and m�� �
m� � m�.

The nth moment of the variable x distributed log-normally is
given by

	x
n� � exp
nmx � n2Vx�2� . [A12]

Thus, its mean is 	x � 	x (n � 1) � exp(mx � Vx�2) and its variance
is 
x

2 � 	2 � 	1
2 � 	1

2 [exp(Vx) � 1].
Let us now find the distribution of g growth rate of classes. It

is defined as

g � ln
S
 t � 1�

S
 t�
� ln 	

i�1

K

��i � ln 	
i�1

K

� i. [A13]

Here we neglect the influx of new units. According to the central-
limit theorem, the sum of K independent random variables with
mean 	� � 	�(1) and finite variance 
�

2 is

	
i�1

K

� i � K	� � �K�K, [A14]

where �K is the random variable with the distribution converging to
Gaussian

lim
K3�

P
�K� 3
1

�2�
�
2 exp
��K

2 �2
�
2� . [A15]

Because ln 	� � m� � V��2 and ln 	�� � ln 	� � ln 	�, we have,
after some algebra,

g � m� �
V�

2
�

��K	� � �K	��

�K	�	��

. [A16]

For large K the last term in Eq. A16 is the difference of two
Gaussian variables, and that is a Gaussian variable itself. To find
the distribution of g we must find its mean and variance. After
some algebra,
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g � m� �
V�

2
�

�i�1
K �i
�i � 	��

K	��
. [A17]

Because 	�� � 	�	�, the average of each term in the sum is 	�� �
	�	� � 0. The variance of each term in the sum is �(�i�i)2� � �2�i

2

�i 	�� � ��i
2 	�

2�, where �i�i, �i
2 �i, and �i

2 are all log-normal
independent random variables. Particularly, (�i�i)2 is log-normal
with V � 4V� � 4V� and m � 2m� � 2m�; �i

2�i is log-normal with
V � 4V� � V� and m � 2m� � m�; �i

2 is log-normal with V � 4V�

and m � 2m�. Using Eqs. A12 and A17 and collecting all the terms,
we find the variance of g: V � 
g

2 � V�K, where

V � exp
 V���exp
 V�� � 1
 . [A18]

Therefore, for large K, g has a Gaussian distribution with mean
g� � m� � V��2 and variance V�K.

The distribution of the growth rate of the old classes can be found
by Eq. 7. To find a close form approximation, we replace the
summation in Eq. 7 by integration and replace the distributions
P(K) by Eq. 1 and P(g) by Eq. 8 as follows, assuming g� � 0.

Pold
g� �
1

�2�V�
0

� 1
K
 t�

exp� �K
K
 t�� exp��

g2K
2V 
 �KdK ,

�
�K
 t�

2 �2V
� 1 �

K
 t�
2V

g2� �
3
2
, [A19]

where K(t) is the average number of units in the old classes (see
Eq. A4). This distribution decays as 1�g3 and thus does not have
finite variance. In fact, we approximate the distribution of
number of units in the old classes by a continuous function
exp[�K�K(t)]�K(t), although in reality it is a discrete distribu-
tion, Pold(K) � �K(1���1), where � � exp[�1�K(t)]. The
corrected distribution of growth rates is then given by the sum

Pold
g� �
1

�2�V

1 � �

�
	

K�1

�

�K�K exp
�g2K�2V� . [A20]

The slowest decaying term is (1 � �)��2�V exp(�g2�2V),
which describes the behavior of the distribution when g 3 �.
Thus, there is a crossover when g � �2V.

For the new classes, when t 3 � the distribution of number
of units is approximated by Eq. A7. Again replacing summation
in Eq. 7 by integration and replacing P(g�K) by Eq. 8 and after
switching the order of integration, we have Pnew(g) � Pg(g)
defined in Eq. 11. As g3 �, we can evaluate the second integral
in Eq. 11 by partial integration:

Pnew
g� �
1

1 � b
1

�2�V

2V
g2

��

�g2�2V � 1
�

1
g3.

[A21]

We compute the first derivative of the distribution defined in
Eq. 11 by differentiating the integrand in the second integral
with respect to g. The second integral converges as y 3 0, and
we find the behavior of the derivative for g 3 0 by the
substitution K* � Kg2�(2V). As g3 0, the derivative behaves as
g�g2[�3/2�1/(1�b)] � g2b/(1�b), which means that the function itself
behaves as C2 � C1�g�2b/(1�b)�1, where C2 and C1 are positive
constants. For small b, this behavior is similar to the behavior of
a Laplace distribution with variance V: exp(��2�g���V)�
�2V � 1��2V � �g��V.

When b3 0, Eq. 11 can be simplified and, after some elementary
calculus, we have Eq. 12, which behaves for g3 0 as 1��2V � �g��V
and for g 3 � as V�(2g3). Thus, the distribution is well approxi-
mated by a Laplace distribution in the body with power-law tails.
Because of the discrete nature of the distribution of the number of
units, when g �� �2V, the behavior for g 3 � is dominated by
const�exp(�g2�2V).
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